Präzise Behandlung von schweren neurologischen Erkrankungen mit magnetischen Nanopartikeln
Es könnte der Plot eines Science-Fiktion-Romans sein: Magnetische Nanopartikel werden in die Blutbahn injiziert, überwinden unter Einsatz starken Ultraschalls die Blut-Hirn-Schranke und verteilen sich im Hirngewebe. Angeregt durch ein externes Magnetfeld, wirken sie wahlweise mechanisch oder thermisch auf Neuronen und können die Hirnaktivität punktgenau selbst in tiefen Arealen entweder hemmen oder stimulieren. „Mit diesem minimalinvasiven Eingriff wird es möglich, schwere neurologische Erkrankungen wie
Depression, Panikstörungen,
Alzheimer oder
Parkinson zeitlich und räumlich präzise zu behandeln oder die neuronale Aktivität etwa bei Krampfanfällen wieder ins Gleichgewicht zu bringen“, erklärt Danijela Gregurec. „Bislang basierten solche Interventionen zumeist auf starken elektrischen Stimulationen durch invasive Elektrodenimplantate, was für die Betroffenen häufig unangenehm und mit zum Teil gravierenden Nebenwirkungen verbunden ist.“
Neues Verfahren soll Teil des Standardrepertoires der neurologischen Medizin werden
Die Forscherin arbeitet daran, dass ihre Vision schon bald zum Standardrepertoire der neurologischen Medizin zählt. Sie ist Professorin für Sensory Sciences am Lehrstuhl für Aroma- und Geruchsforschung der FAU und beschäftigt sich mit der Synthese von Materialien im Nanomaßstab, denen sie spezifische physiochemische Eigenschaften verleiht. Bevor sie Ende 2022 nach Erlangen wechselte, arbeitete sie am Massachusetts Institute of Technology (MIT) – im Research Laboratory of Electronics und am McGovern Institute for Brain Research. „Hier habe ich begonnen, scheinbar fremde Welten miteinander zu verbinden: Materialwissenschaft, Sinne und Gehirn“, erzählt sie. An der FAU sieht sie das ideale Umfeld, ihre multidisziplinäre Forschung im Bereich von Werkstoffchemie, Neurobiologie, Biophysik, Bildgebung und Ingenieurwesen voranzutreiben. „Ich arbeite hier mit erstklassigen Wissenschaftler:innen zusammen und habe zugleich die Freiheit, Out-of-the-Box zu denken und zu forschen. Dafür bin ich sehr dankbar.“
Lesen Sie mehr zu diesem Thema:
Deprexis bei Depressionen: ein innovatives Therapieformat
Erschienen am 12.01.2023 • Deprexis als innovatives Therapieformat bei Depressionen im Aufwind. Mehr dazu lesen Sie hier!
Erschienen am 12.01.2023 • Deprexis als innovatives Therapieformat bei Depressionen im Aufwind. Mehr dazu lesen Sie hier!
© Servier/deprexis
Nanopartikel nutzen die Energie eines Magnetfeldes, um Nervenzellen zu stimulieren oder zu hemmen
Für ihre kreative Forschung an der Schnittstelle von Chemie, Materialwissenschaften und Medizin hat Danijela Gregurec nun einen ebenso prestigeträchtigen wie finanziell attraktiven Pathfinder Open Grant der EU gewonnen. Gemeinsam mit Kolleg:innen aus Italien, Spanien, Großbritannien und Finnland wird sie in den kommenden 4 Jahren das Projekt BRAINSTORM bearbeiten, das mit 3 Millionen Euro gefördert wird, 740.000 Euro davon entfallen auf die FAU. Mit BRAINSTORM wollen die Forschenden eine bahnbrechende Technologie zur drahtlosen Neuromodulation entwickeln – auf der Basis anisotropischer ferromagnetischer Nanoteilchen, die mit einer neuartigen funktionalen Polymerschicht überzogen sind. „Diese Materialkombination ermöglicht eine bimodale Funktionalität“, erklärt Gregurec. „Je nachdem, welche externen Signale wir senden, wandeln die Partikel die Energie des Magnetfeldes in Wärme oder mechanische Kraft um.“ Auf diese Weise sollen sie gezielt jene Ionenkanäle von Proteinen manipulieren, die für die sensorische Aktivität von Nervenzellen verantwortlich sind. Im Falle neurologischer Überaktivität – etwa bei Panikstörungen oder Epilepsie – können sie ausgleichend wirken, indem sie regelmäßige Muster neuronaler Erregung und Hemmung etablieren. Bei degenerativen Erkrankungen wie
Demenz oder Alzheimer sollen sie die Aktivität stimulieren und im Idealfall zur Regeneration neuronaler Netze führen.
Die neue minimalinvasive Behandlung kann die Heilungschancen von Hirnerkrankungen erhöhen
Die neue Technologie könnte herkömmliche Verfahren wie die Tiefe Hirnstimulation oder die Transkranielle Magnetstimulation ablösen, die gravierende Nachteile haben: Sie sind auf die chronische Implantation makroskopischer Elektroden angewiesen, können tiefliegende Hirnregionen nicht gezielt ansprechen und nicht zwischen neuronalen Zelltypen unterscheiden. Gregurec ist überzeugt davon, dass ihre präzise und minimalinvasive Behandlungsmethode die Heilungschancen von Hirnerkrankungen erhöhen und die Lebensqualität der Betroffenen wesentlich verbessern kann. Ihre Vision geht sogar weit über die beschriebenen medizinischen Anwendungen hinaus: „Mit funktionellen Nanomaterialien werden wir künftig nicht nur neuronale Schaltkreise steuern, sondern sogar mit einzelnen sensorischen Proteinen kommunizieren“, sagt sie. „Das versetzt uns in die Lage, Informationen aus den komplexen und rätselhaften Tiefen des Gehirns zu empfangen – und so neue bahnbrechende Erkenntnisse zu gewinnen.“